Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.382
Filtrar
1.
Aquat Toxicol ; 270: 106896, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490093

RESUMO

Inorganic mercury (IHg) is hazardous to marine organisms especially resulting in neurotoxicity, bivalves are sensitive to pollutants as "ocean sentinel", but data on the neurotoxicity of IHg in bivalves are sparse. So we chosed M. chinensis philippi with typical neural structures in bivalves to investigate the neurotoxicity of IHg, which could be helpful to understand the specificity of neural regulation and the response characteristics of bivalves. After acute exposed to IHg (HgCl2) for 24 h, the metabolites of ganglion tissues in M. chinensis philippi were evaluated using 1H-nuclear magnetic resonance based metabolomics; Ca2+, neurotransmitters (nitric oxide, glutamate, acetylcholine) and related enzymes (calcineurin, nitric oxide synthase and acetylcholinesterase) were measured using biochemical detection. Compared to the control group, the levels of the nitric oxide (81.04 ± 12.84 µmol/g prot) and acetylcholine (30.93 ± 12.57 µg/mg prot) in M. chinensis philippi of IHg-treated were decreased, while glutamate (2.11 ± 0.61 mmol/L) increased significantly; the activity of nitric oxide synthase (679.34 ± 135.33 U/mg prot) was increased, while acetylcholinesterase (1.39 ± 0.44 U/mg prot) decreased significantly, and the activity of calcineurin (0.52 ± 0.02 U/mg prot) had a statistically insignificant increasing tendency. The concentration of Ca2+ (0.92 ± 0.46 mmol/g prot) in the IHg-treated group was significantly higher than that in the control group. OPLS-DA was performed to reveal the difference in metabolites between the control and IHg-challenged groups, the metabolites of glucose, glutamine, inosine, succinate, glutamate, homarine, and alanine were sensitive to IHg, subsequently metabolic pathways that were affected including glucose metabolism, glutamine metabolism, nucleotide metabolism, Krebs cycle, amino acid metabolism and osmotic regulation. In our study, IHg interfered with metabolites in M. chinensis philippi, thus the corresponding metabolic pathways were changed, which influenced the neurotransmitters subsequently. Furthermore, Ca2+overload affected the synthesis or degradation of the neurotransmitters, and then the altered neurotransmitters involved in changes in metabolic pathways again. Overall, we hypothesized that the neurotoxic effects of IHg on bivalve were in close contact with metabolism, neurotransmitters, related enzymes and Ca2+, which could be effective neurotoxic biomarkers for marine environmental quality assessment, and also provide effective data for the study of the regulatory mechanism of the nervous system in response to IHg in bivalves.


Assuntos
Bivalves , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Mercúrio/toxicidade , Mercúrio/metabolismo , Acetilcolinesterase , Óxido Nítrico , Acetilcolina , Calcineurina , Glutamina , Poluentes Químicos da Água/toxicidade , Bivalves/metabolismo , Glutamatos , Neurotransmissores , Óxido Nítrico Sintase , Compostos de Metilmercúrio/toxicidade
2.
PLoS One ; 19(3): e0295700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457407

RESUMO

Mechanical overloading (OVL) resulting from the ablation of muscle agonists, a supra-physiological model of resistance training, reduces skeletal muscle fragility, i.e. the immediate maximal force drop following lengthening contractions, and increases maximal force production, in mdx mice, a murine model of Duchene muscular dystrophy (DMD). Here, we further analyzed these beneficial effects of OVL by determining whether they were blocked by cyclosporin, an inhibitor of the calcineurin pathway, and whether there were also observed in the D2-mdx mice, a more severe murine DMD model. We found that cyclosporin did not block the beneficial effect of 1-month OVL on plantaris muscle fragility in mdx mice, nor did it limit the increases in maximal force and muscle weight (an index of hypertrophy). Fragility and maximal force were also ameliorated by OVL in the plantaris muscle of D2-mdx mice. In addition, OVL increased the expression of utrophin, cytoplamic γ-actin, MyoD, and p-Akt in the D2-mdx mice, proteins playing an important role in fragility, maximal force gain and muscle growth. In conclusion, OVL reduced fragility and increased maximal force in the more frequently used mild mdx model but also in D2-mdx mice, a severe model of DMD, closer to human physiopathology. Moreover, these beneficial effects of OVL did not seem to be related to the activation of the calcineurin pathway. Thus, this preclinical study suggests that resistance training could have a potential benefit in the improvement of the quality of life of DMD patients.


Assuntos
Ciclosporinas , Distrofia Muscular de Duchenne , Treinamento de Força , Humanos , Animais , Camundongos , Distrofia Muscular de Duchenne/patologia , Camundongos Endogâmicos mdx , Calcineurina/metabolismo , Qualidade de Vida , Músculo Esquelético/metabolismo , Ciclosporinas/farmacologia , Modelos Animais de Doenças
3.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338818

RESUMO

TRPV4 channels, which respond to mechanical activation by permeating Ca2+ into the cell, may play a pivotal role in cardiac remodeling during cardiac overload. Our study aimed to investigate TRPV4 involvement in pathological and physiological remodeling through Ca2+-dependent signaling. TRPV4 expression was assessed in heart failure (HF) models, induced by isoproterenol infusion or transverse aortic constriction, and in exercise-induced adaptive remodeling models. The impact of genetic TRPV4 inhibition on HF was studied by echocardiography, histology, gene and protein analysis, arrhythmia inducibility, Ca2+ dynamics, calcineurin (CN) activity, and NFAT nuclear translocation. TRPV4 expression exclusively increased in HF models, strongly correlating with fibrosis. Isoproterenol-administered transgenic TRPV4-/- mice did not exhibit HF features. Cardiac fibroblasts (CFb) from TRPV4+/+ animals, compared to TRPV4-/-, displayed significant TRPV4 overexpression, elevated Ca2+ influx, and enhanced CN/NFATc3 pathway activation. TRPC6 expression paralleled that of TRPV4 in all models, with no increase in TRPV4-/- mice. In cultured CFb, the activation of TRPV4 by GSK1016790A increased TRPC6 expression, which led to enhanced CN/NFATc3 activation through synergistic action of both channels. In conclusion, TRPV4 channels contribute to pathological remodeling by promoting fibrosis and inducing TRPC6 upregulation through the activation of Ca2+-dependent CN/NFATc3 signaling. These results pose TRPV4 as a primary mediator of the pathological response.


Assuntos
Calcineurina , Insuficiência Cardíaca , Canais de Cátion TRPV , Remodelação Ventricular , Animais , Camundongos , Calcineurina/metabolismo , Células Cultivadas , Fibrose , Insuficiência Cardíaca/metabolismo , Isoproterenol , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Remodelação Ventricular/genética
4.
mBio ; 15(4): e0039224, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38411085

RESUMO

SARS-CoV-2, the causative agent of COVID-19, has been intensely studied in search of effective antiviral treatments. The immunosuppressant cyclosporine A (CsA) has been suggested to be a pan-coronavirus inhibitor, yet its underlying mechanism remained largely unknown. Here, we found that non-structural protein 1 (Nsp1) of SARS-CoV-2 usurped CsA-suppressed nuclear factor of activated T cells (NFAT) signaling to drive the expression of cellular DEAD-box helicase 5 (DDX5), which facilitates viral replication. Nsp1 interacted with calcineurin A (CnA) to displace the regulatory protein regulator of calcineurin 3 (RCAN3) of CnA for NFAT activation. The influence of NFAT activation on SARS-CoV-2 replication was also validated by using the Nsp1-deficient mutant virus. Calcineurin inhibitors, such as CsA and VIVIT, inhibited SARS-CoV-2 replication and exhibited synergistic antiviral effects when used in combination with nirmatrelvir. Our study delineated the molecular mechanism of CsA-mediated inhibition of SARS-CoV-2 replication and the anti-SARS-CoV-2 action of calcineurin inhibitors. IMPORTANCE: Cyclosporine A (CsA), commonly used to inhibit immune responses, is also known to have anti-SARS-CoV-2 activity, but its mode of action remains elusive. Here, we provide a model to explain how CsA antagonizes SARS-CoV-2 through three critical proteins: DDX5, NFAT1, and Nsp1. DDX5 is a cellular facilitator of SARS-CoV-2 replication, and NFAT1 controls the production of DDX5. Nsp1 is a viral protein absent from the mature viral particle and capable of activating the function of NFAT1 and DDX5. CsA and similar agents suppress Nsp1, NFAT1, and DDX5 to exert their anti-SARS-CoV-2 activity either alone or in combination with Paxlovid.


Assuntos
COVID-19 , SARS-CoV-2 , Transdução de Sinais , Proteínas não Estruturais Virais , Humanos , Antivirais , Calcineurina/metabolismo , Inibidores de Calcineurina/farmacologia , COVID-19/virologia , Ciclosporina/farmacologia , Fatores de Transcrição NFATC/metabolismo , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/metabolismo
5.
Cell Syst ; 15(3): 246-263.e7, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38366601

RESUMO

Autoinhibition is a prevalent allosteric regulatory mechanism in signaling proteins. Reduced autoinhibition underlies the tumorigenic effect of some known cancer drivers, but whether autoinhibition is altered generally in cancer remains elusive. Here, we demonstrate that cancer-associated missense mutations, in-frame insertions/deletions, and fusion breakpoints are enriched within inhibitory allosteric switches (IASs) across all cancer types. Selection for IASs that are recurrently mutated in cancers identifies established and unknown cancer drivers. Recurrent missense mutations in IASs of these drivers are associated with distinct, cancer-specific changes in molecular signaling. For the specific case of PPP3CA, the catalytic subunit of calcineurin, we provide insights into the molecular mechanisms of altered autoinhibition by cancer mutations using biomolecular simulations, and demonstrate that such mutations are associated with transcriptome changes consistent with increased calcineurin signaling. Our integrative study shows that autoinhibition-modulating genetic alterations are positively selected for by cancer cells.


Assuntos
Calcineurina , Neoplasias , Humanos , Calcineurina/genética , Neoplasias/genética , Mutação/genética , Carcinogênese , Mutação de Sentido Incorreto/genética
6.
Cell Signal ; 116: 111043, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38211841

RESUMO

Calcium is a ubiquitous second messenger that is indispensable in regulating neurotransmission and memory formation. A precise intracellular calcium level is achieved through the concerted action of calcium channels, and calcium exerts its effect by binding to an array of calcium-binding proteins, including calmodulin (CAM), calcium-calmodulin complex-dependent protein kinase-II (CAMK-II), calbindin (CAL), and calcineurin (CAN). Calbindin orchestrates a plethora of signaling events that regulate synaptic transmission and depolarizing signals. Vitamin D, an endogenous fat-soluble metabolite, is synthesized in the skin upon exposure to ultraviolet B radiation. It modulates calcium signaling by increasing the expression of the calcium-sensing receptor (CaSR), stimulating phospholipase C activity, and regulating the expression of calcium channels such as TRPV6. Vitamin D also modulates the activity of calcium-binding proteins, including CAM and calbindin, and increases their expression. Calbindin, a high-affinity calcium-binding protein, is involved in calcium buffering and transport in neurons. It has been shown to inhibit apoptosis and caspase-3 activity stimulated by presenilin 1 and 2 in AD. Whereas CAM, another calcium-binding protein, is implicated in regulating neurotransmitter release and memory formation by phosphorylating CAN, CAMK-II, and other calcium-regulated proteins. CAMK-II and CAN regulate actin-induced spine shape changes, which are further modulated by CAM. Low levels of both calbindin and vitamin D are attributed to the pathology of Alzheimer's disease. Further research on vitamin D via calbindin-CAMK-II signaling may provide newer insights, revealing novel therapeutic targets and strategies for treatment.


Assuntos
Doença de Alzheimer , Vitamina D , Humanos , Sinalização do Cálcio , Calbindinas , Calmodulina , Cálcio , Proteínas de Ligação ao Cálcio , Canais de Cálcio , Calcineurina , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina
7.
Plant Cell Environ ; 47(5): 1486-1502, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38238896

RESUMO

For plant growth under salt stress, sensing and transducing salt signals are central to cellular Na+ homoeostasis. The calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) complexes play critical roles in transducing salt signals in plants. Here, we show that CBL5, an ortholog of CBL4 and CBL10 in Arabidopsis, interacts with and recruits CIPK8/CIPK24 to the plasma membrane. Yeast cells coexpressing CBL5, CIPK8/CIPK24 and SOS1 demonstrated lesser Na+ accumulation and a better growth phenotype than the untransformed or SOS1 transgenic yeast cells under salinity. Overexpression of CBL5 improved the growth of the cipk8 or cipk24 single mutant but not the cipk8 cipk24 double mutant under salt stress, suggesting that CIPK8 and CIPK24 were the downstream targets of CBL5. Interestingly, seed germination in cbl5 was severely inhibited by NaCl, which was recovered by the overexpression of CBL5. Furthermore, CBL5 was mainly expressed in the cotyledons and hypocotyls, which are essential to seed germination. Na+ efflux activity in the hypocotyls of cbl5 was reduced relative to the wild-type under salt stress, enhancing Na+ accumulation. These findings indicate that CBL5 functions in seed germination and protects seeds and germinating seedlings from salt stress through the CBL5-CIPK8/CIPK24-SOS1 pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Germinação , Calcineurina/genética , Calcineurina/metabolismo , Saccharomyces cerevisiae/metabolismo , Sementes , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Quinases/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo
8.
Glia ; 72(5): 899-915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38288580

RESUMO

Alzheimer's disease (AD) represents an urgent yet unmet challenge for modern society, calling for exploration of innovative targets and therapeutic approaches. Astrocytes, main homeostatic cells in the CNS, represent promising cell-target. Our aim was to investigate if deletion of the regulatory CaNB1 subunit of calcineurin in astrocytes could mitigate AD-related memory deficits, neuropathology, and neuroinflammation. We have generated two, acute and chronic, AD mouse models with astrocytic CaNB1 ablation (ACN-KO). In the former, we evaluated the ability of ß-amyloid oligomers (AßOs) to impair memory and activate glial cells once injected in the cerebral ventricle of conditional ACN-KO mice. Next, we generated a tamoxifen-inducible astrocyte-specific CaNB1 knock-out in 3xTg-AD mice (indACNKO-AD). CaNB1 was deleted, by tamoxifen injection, in 11.7-month-old 3xTg-AD mice for 4.4 months. Spatial memory was evaluated using the Barnes maze; ß-amyloid plaques burden, neurofibrillary tangle deposition, reactive gliosis, and neuroinflammation were also assessed. The acute model showed that ICV injected AßOs in 2-month-old wild type mice impaired recognition memory and fostered a pro-inflammatory microglia phenotype, whereas in ACN-KO mice, AßOs were inactive. In indACNKO-AD mice, 4.4 months after CaNB1 depletion, we found preservation of spatial memory and cognitive flexibility, abolishment of amyloidosis, and reduction of neurofibrillary tangles, gliosis, and neuroinflammation. Our results suggest that ACN is crucial for the development of cognitive impairment, AD neuropathology, and neuroinflammation. Astrocyte-specific CaNB1 deletion is beneficial for both the abolishment of AßO-mediated detrimental effects and treatment of ongoing AD-related pathology, hence representing an intriguing target for AD therapy.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Doença de Alzheimer/patologia , Astrócitos/patologia , Calcineurina , Gliose/patologia , Doenças Neuroinflamatórias , Peptídeos beta-Amiloides , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Tamoxifeno/farmacologia , Modelos Animais de Doenças , Camundongos Transgênicos , Camundongos Endogâmicos C57BL
9.
mBio ; 15(2): e0327523, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193728

RESUMO

The casein kinase 2 (CK2) complex has garnered extensive attention over the past decades as a potential therapeutic target for diverse human diseases, including cancer, diabetes, and obesity, due to its pivotal roles in eukaryotic growth, differentiation, and metabolic homeostasis. While CK2 is also considered a promising antifungal target, its role in fungal pathogens remains unexplored. In this study, we investigated the functions and regulatory mechanisms of the CK2 complex in Cryptococcus neoformans, a major cause of fungal meningitis. The cryptococcal CK2 complex consists of a single catalytic subunit, Cka1, and two regulatory subunits, Ckb1 and Ckb2. Our findings show that Cka1 plays a primary role as a protein kinase, while Ckb1 and Ckb2 have major and minor regulatory functions, respectively, in growth, cell cycle control, morphogenesis, stress response, antifungal drug resistance, and virulence factor production. Interestingly, triple mutants lacking all three subunits (cka1Δ ckb1Δ ckb2Δ) exhibited more severe phenotypic defects than the cka1Δ mutant alone, suggesting that Ckb1/2 may have Cka1-independent functions. In a murine model of systemic cryptococcosis, cka1Δ and cka1Δ ckb1Δ ckb2Δ mutants showed severely reduced virulence. Transcriptomic, proteomic, and phosphoproteomic analyses further revealed that the CK2 complex controls a wide array of effector proteins involved in transcriptional regulation, cell cycle control, nutrient metabolisms, and stress responses. Most notably, CK2 disruption led to dysregulation of key signaling cascades central to C. neoformans pathogenicity, including the Hog1, Mpk1 MAPKs, cAMP/PKA, and calcium/calcineurin signaling pathways. In summary, our study provides novel insights into the multifaceted roles of the fungal CK2 complex and presents a compelling case for targeting it in the development of new antifungal drugs.IMPORTANCEThe casein kinase 2 (CK2) complex, crucial for eukaryotic growth, differentiation, and metabolic regulation, presents a promising therapeutic target for various human diseases, including cancer, diabetes, and obesity. Its potential as an antifungal target is further highlighted in this study, which explores CK2's functions in C. neoformans, a key fungal meningitis pathogen. The CK2 complex in C. neoformans, comprising the Cka1 catalytic subunit and Ckb1/2 regulatory subunits, is integral to processes like growth, cell cycle, morphogenesis, stress response, drug resistance, and virulence. Our findings of CK2's role in regulating critical signaling pathways, including Hog1, Mpk1 MAPKs, cAMP/PKA, and calcium/calcineurin, underscore its importance in C. neoformans pathogenicity. This study provides valuable insights into the fungal CK2 complex, reinforcing its potential as a target for novel antifungal drug development and pointing out a promising direction for creating new antifungal agents.


Assuntos
Criptococose , Cryptococcus neoformans , Diabetes Mellitus , Meningite Fúngica , Neoplasias , Animais , Camundongos , Humanos , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Cryptococcus neoformans/metabolismo , Antifúngicos/metabolismo , Cálcio/metabolismo , Calcineurina/metabolismo , Proteômica , Transdução de Sinais , Criptococose/microbiologia , Obesidade
10.
Cell Death Differ ; 31(2): 217-238, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38238520

RESUMO

Selective removal of dysfunctional mitochondria via autophagy is crucial for the maintenance of cellular homeostasis. This event is initiated by the translocation of the E3 ubiquitin ligase Parkin to damaged mitochondria, and it requires the Serine/Threonine-protein kinase PINK1. In a coordinated set of events, PINK1 operates upstream of Parkin in a linear pathway that leads to the phosphorylation of Parkin, Ubiquitin, and Parkin mitochondrial substrates, to promote ubiquitination of outer mitochondrial membrane proteins. Ubiquitin-decorated mitochondria are selectively recruiting autophagy receptors, which are required to terminate the organelle via autophagy. In this work, we show a previously uncharacterized molecular pathway that correlates the activation of the Ca2+-dependent phosphatase Calcineurin to Parkin translocation and Parkin-dependent mitophagy. Calcineurin downregulation or genetic inhibition prevents Parkin translocation to CCCP-treated mitochondria and impairs stress-induced mitophagy, whereas Calcineurin activation promotes Parkin mitochondrial recruitment and basal mitophagy. Calcineurin interacts with Parkin, and promotes Parkin translocation in the absence of PINK1, but requires PINK1 expression to execute mitophagy in MEF cells. Genetic activation of Calcineurin in vivo boosts basal mitophagy in neurons and corrects locomotor dysfunction and mitochondrial respiratory defects of a Drosophila model of impaired mitochondrial functions. Our study identifies Calcineurin as a novel key player in the regulation of Parkin translocation and mitophagy.


Assuntos
Calcineurina , Proteínas de Drosophila , Animais , Calcineurina/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Mitofagia/genética , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
11.
BMC Complement Med Ther ; 24(1): 10, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167059

RESUMO

BACKGROUND: Shikonin, a natural naphthoquinone compound extracted from the Chinese traditional herbal medicine "Lithospermum erythrorhizon", possesses antitumor activity against various cancer types. Tumor-suppressor genes (TSGs) negatively regulate cell growth, proliferation, and differentiation, thereby inhibiting tumor formation. However, the molecular mechanism of action of shikonin on TSGs in non-small-cell lung cancer (NSCLC) remains unclear. METHODS: The inhibitory effect of shikonin on the proliferation and migration abilities of lung cancer cells were measured by Cell Counting Kit 8 (CCK8) and wound healing assays. The alteration of genes by shikonin treatment was detected by mRNA high-throughput sequencing and further confirmed by qPCR and western blotting experiments. The dominant functions of the upregulated genes were analyzed by GO and KEGG profiling. RESULTS: Shikonin inhibited the proliferation and migration of A549 and H1299 NSCLC cells in a dose-dependent manner. mRNA high-throughput sequencing revealed a total of 1794 upregulated genes in shikonin-treated NSCLC cells. Moreover, bioinformatic analysis of GO and KEGG profiling revealed that the up-regulated genes were mostly involved in the JNK/P38/MAPK signaling pathway, among which the expression of GADD45B and PPP3CC was significantly enhanced. Finally, we confirmed that GADD45B and PPP3CC were indeed upregulated in JNK/P38/MAPK pathway. CONCLUSIONS: Taken together, these results suggested that shikonin might affect the expression of GADD45B and PPP3CC through the JNK/P38/MAPK pathway, therefore exerting an inhibitory effect on the proliferation and migration of cancer cells. To our knowledge, this is the first study reporting the role of shikonin in upregulating TSGs to activate the JNK/P38/MAPK signaling pathways in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Naftoquinonas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases , Naftoquinonas/farmacologia , Proliferação de Células , RNA Mensageiro/metabolismo , 60623 , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/farmacologia , Calcineurina/metabolismo , Calcineurina/farmacologia
12.
mSphere ; 9(1): e0055423, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38171022

RESUMO

The protein phosphatase calcineurin is vital for the virulence of the opportunistic fungal pathogen Candida glabrata. The host-induced stresses that activate calcineurin signaling are unknown, as are the targets of calcineurin relevant to virulence. To potentially shed light on these processes, millions of transposon insertion mutants throughout the genome of C. glabrata were profiled en masse for fitness defects in the presence of FK506, a specific inhibitor of calcineurin. Eighty-seven specific gene deficiencies depended on calcineurin signaling for full viability in vitro both in wild-type and pdr1∆ null strains lacking pleiotropic drug resistance. Three genes involved in cell wall biosynthesis (FKS1, DCW1, FLC1) possess co-essential paralogs whose expression depended on calcineurin and Crz1 in response to micafungin, a clinical antifungal that interferes with cell wall biogenesis. Interestingly, 80% of the FK506-sensitive mutants were deficient in different aspects of vesicular trafficking, such as endocytosis, exocytosis, sorting, and biogenesis of secretory proteins in the endoplasmic reticulum (ER). In response to the experimental antifungal manogepix that blocks GPI-anchor biosynthesis in the ER, calcineurin signaling increased and strongly prevented cell death independent of Crz1, one of its major targets. Comparisons between manogepix, micafungin, and the ER-stressing tunicamycin reveal a correlation between the degree of calcineurin signaling and the degree of cell survival. These findings suggest that calcineurin plays major roles in mitigating stresses of vesicular trafficking. Such stresses may arise during host infection and in response to antifungal therapies.IMPORTANCECalcineurin plays critical roles in the virulence of most pathogenic fungi. This study sheds light on those roles in the opportunistic pathogen Candida glabrata using a genome-wide analysis in vitro. The findings could lead to antifungal developments that also avoid immunosuppression.


Assuntos
Aminopiridinas , Antifúngicos , Candidíase , Isoxazóis , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida glabrata/fisiologia , Micafungina/uso terapêutico , Candidíase/microbiologia , Calcineurina/genética , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
13.
Genetics ; 226(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38279937

RESUMO

Adaptation to external environmental challenges at the cellular level requires rapid responses and involves relay of information to the nucleus to drive key gene expression changes through downstream transcription factors. Here, we describe an alternative route of adaptation through a direct role for cellular signaling components in governing gene expression via RNA interference-mediated small RNA production. Calcium-calcineurin signaling is a highly conserved signaling cascade that plays central roles in stress adaptation and virulence of eukaryotic pathogens, including the human fungal pathogen Cryptococcus neoformans. Upon activation in C. neoformans, calcineurin localizes to P-bodies, membraneless organelles that are also the site for RNA processing. Here, we studied the role of calcineurin and its substrates in RNAi-mediated transgene silencing. Our results reveal that calcineurin regulates both the onset and the reversion of transgene silencing. We found that some calcineurin substrates that localize to P-bodies also regulate transgene silencing but in opposing directions. Small RNA sequencing in mutants lacking calcineurin or its targets revealed a role for calcineurin in small RNA production. Interestingly, the impact of calcineurin and its substrates was found to be different in genome-wide analysis, suggesting that calcineurin may regulate small RNA production in C. neoformans through additional pathways. Overall, these findings define a mechanism by which signaling machinery induced by external stimuli can directly alter gene expression to accelerate adaptative responses and contribute to genome defense.


Assuntos
Criptococose , Cryptococcus neoformans , Humanos , Cryptococcus neoformans/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Criptococose/microbiologia , Transgenes , Proteínas Fúngicas/genética
14.
Acta Physiol (Oxf) ; 240(3): e14084, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214031

RESUMO

AIM: To place the consequences of calcineurin inhibition in a cardiovascular context. METHODS: Literature review coupled with personal encounters. RESULTS: Calcineurin is a calcium-binding and calmodulin-binding protein that is conserved across evolution from yeast to mammals. The enzyme functions as a calcium-dependent, calmodulin-stimulated protein phosphatase. Its role in regulating physiology has largely been elucidated by observing calcineurin inhibition. Calcineurin inhibition transformed organ transplantation from an experiment into a therapy and made much of general immunotherapy possible. The function of this phosphatase and how its inhibition leads to toxicity concern us to this date. Initial research from patients and animal models implicated a panoply of factors contributing to hypertension and vasculopathy. Subsequently, the role of calcineurin in regulating the effective fluid volume, sodium reabsorption, and potassium and hydrogen ion excretion was elucidated by investigating calcineurin inhibition. Understanding the regulatory effects of calcineurin on endothelial and vascular smooth muscle cell function has also made substantial progress. However, precisely how the increase in systemic vascular resistance arises requires further mechanistic research. CONCLUSION: Calcineurin inhibition continues to save lives; however, options to counteract the negative effects of calcineurin inhibition should be vigorously pursued.


Assuntos
Calcineurina , Sistema Cardiovascular , Animais , Humanos , Calcineurina/metabolismo , Cálcio/metabolismo , Proteínas de Ligação a Calmodulina , Sistema Cardiovascular/metabolismo , Mamíferos , Resistência Vascular
15.
J Food Sci ; 89(3): 1727-1738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38258958

RESUMO

Sea cucumber intestines are considered a valuable resource in the sea cucumber processing industry due to their balanced amino acid composition. Studies have reported that peptides rich in glutamate and branched-chain amino acids have anti-fatigue properties. However, the function of the sea cucumber intestine in reducing exercise-induced fatigue remains unclear. In this study, we enzymatically hydrolyzed low molecular weight peptides from sea cucumber intestines (SCIP) and administered SCIP orally to mice to examine its effects on exercise-induced fatigue using swimming and pole-climbing exhaustion experiments. The results revealed that supplementation with SCIP significantly prolonged the exhaustion time of swimming in mice, decreased blood lactate and urea nitrogen levels, and increased liver and muscle glycogen levels following a weight-loaded swimming test. Immunofluorescence analysis indicated a notable increase the proportion of slow-twitch muscle fiber and a significant decrease the proportion of fast-twitch muscle fiber following SCIP supplementation. Furthermore, SCIP upregulated mRNA expression levels of Ca2+ /Calcineurin upstream and downstream regulators, thereby contributing to the promotion of skeletal muscle fiber type conversion. This study presents the initial evidence establishing SCIP as a potential enhancer of skeletal muscle fatigue resistance, consequently providing a theoretical foundation for the valuable utilization of sea cucumber intestines.


Assuntos
Calcineurina , Pepinos-do-Mar , Camundongos , Animais , Calcineurina/metabolismo , Calcineurina/farmacologia , Pepinos-do-Mar/metabolismo , Músculo Esquelético/metabolismo , Peptídeos/farmacologia , Natação/fisiologia , Transdução de Sinais , Intestinos , Peptídeo Hidrolases/metabolismo
16.
Planta ; 259(2): 49, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285217

RESUMO

MAIN CONCLUSION: ZmCBL8-1 enhances salt stress tolerance in maize by improving the antioxidant system to neutralize ROS homeostasis and inducing Na+/H+ antiporter gene expressions of leaves. Calcineurin B-like proteins (CBLs) as plant-specific calcium sensors have been explored for their roles in the regulation of abiotic stress tolerance. Further, the functional variations in ZmCBL8, encoding a component of the salt overly sensitive pathway, conferred the salt stress tolerance in maize. ZmCBL8-1 is a transcript of ZmCBL8 found in maize, but its function in the salt stress response is still unclear. The present study aimed to characterize the protein ZmCBL8-1 that was determined to be composed of 194 amino acids (aa) with three conserved EF hands responsible for binding Ca2+. However, a 20-aa fragment was found to be missing from its C-terminus relative to another transcript of ZmCBL8. Results indicated that it harbored a dual-lipid modification motif MGCXXS at its N-terminus and was located on the cell membrane. The accumulation of ZmCBL8-1 transcripts was high in the roots but relatively lower in the leaves of maize under normal condition. In contrast, its expression was significantly decreased in the roots, while increased in the leaves under NaCl treatment. The overexpression of ZmCBL8-1 resulted in higher salt stress resistance of transgenic Arabidopsis in a Ca2+-dependent manner relative to that of the wild type (WT). In ZmCBL8-1-overexpressing plants exposed to NaCl, the contents of malondialdehyde and hydrogen peroxide were decreased in comparison with those in the WT, and the expression of key genes involved in the antioxidant defense system and Na+/H+ antiporter were upregulated. These results suggested that ZmCBL8-1 played a positive role in the response of leaves to salt stress by inducing the expression of Na+/H+ antiporter genes and enhancing the antioxidant system to neutralize the accumulation of reactive oxygen species. These observations further indicate that ZmCBL8-1 confers salt stress tolerance, suggesting that transcriptional regulation of the ZmCBL8 gene is important for salt tolerance.


Assuntos
Arabidopsis , Estresse Salino , Zea mays , Aminoácidos , Antioxidantes , Antiporters , Arabidopsis/fisiologia , Calcineurina/genética , Cloreto de Sódio/farmacologia , Zea mays/genética
17.
J Neurosci Methods ; 402: 110012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984591

RESUMO

BACKGROUND: Calcineurin (CN) is a Ca2+/calmodulin-dependent protein phosphatase. In healthy tissue, CN exists mainly as a full-length (∼60 kDa) highly-regulated protein phosphatase involved in essential cellular functions. However, in diseased or injured tissue, CN is proteolytically converted to a constitutively active fragment that has been causatively-linked to numerous pathophysiologic processes. These calpain-cleaved CN fragments (∆CN) appear at high levels in human brain at early stages of cognitive decline associated with Alzheimer's disease (AD). NEW METHOD: We developed a monoclonal antibody to ∆CN, using an immunizing peptide corresponding to the C-terminal end of the ∆CN fragment. RESULTS: We obtained a mouse monoclonal antibody, designated 26A6, that selectively detects ∆CN in Western analysis of calpain-cleaved recombinant human CN. Using this antibody, we screened both pathological and normal human brain sections provided by the University of Kentucky's Alzheimer's Disease Research Center. 26A6 showed low reactivity towards normal brain tissue, but detected astrocytes both surrounding AD amyloid plaques and throughout AD brain tissue. In brain tissue with infarcts, there was considerable concentration of 26A6-positive astrocytes within/around infarcts, suggesting a link with anoxic/ischemia pathways. COMPARISON WITH EXISTING METHOD: The results obtained with the new monoclonal are similar to those obtained with a polyclonal we had previously developed. However, the monoclonal is an abundant tool available to the dementia research community. CONCLUSIONS: The new monoclonal 26A6 antibody is highly selective for the ∆CN proteolytic fragment and labels a subset of astrocytes, and could be a useful tool for marking insidious brain pathology and identifying novel astrocyte phenotypes.


Assuntos
Doença de Alzheimer , Calpaína , Camundongos , Animais , Humanos , Calpaína/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Anticorpos Monoclonais/metabolismo , Infarto/metabolismo , Infarto/patologia
18.
J Biochem ; 175(3): 235-244, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38030387

RESUMO

The transcription factor NFAT plays key roles in multiple biological activities, such as immune responses, tissue development and malignant transformation. NFAT is dephosphorylated by calcineurin, which is activated by intracellular calcium levels, and translocated into the nucleus, resulting in transcriptional activation. Calcineurin dephosphorylates various target proteins and regulates their functions. However, the regulation of NFAT degradation is largely unknown, and it is unclear whether calcineurin contributes to the stability of NFAT. We investigated the effect of calcineurin inhibition on NFAT protein stability and found that the dephosphorylation of NFAT by calcineurin promotes the NFAT stabilization, whereas calcineurin mutant that is defective in phosphatase activity was unable to stabilize NFAT. Increased intracellular calcium ion concentration, which is essential for calcineurin activation, also induced NFAT stability. In addition, we identified S-phase kinase associated protein 2 (Skp2), an F-box protein of the SCF ubiquitin ligase complex, as a factor mediating degradation of NFAT when calcineurin was depleted. In summary, these findings revealed that the dephosphorylation of NFAT by calcineurin protects NFAT from degradation by Skp2 and promotes its protein stability.


Assuntos
Calcineurina , Fatores de Transcrição NFATC , Calcineurina/metabolismo , Fatores de Transcrição NFATC/metabolismo , Cálcio/metabolismo , Proteínas Quinases Associadas a Fase S , Proteínas/metabolismo
19.
Chemistry ; 30(3): e202302350, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37855054

RESUMO

For a potential application of FK506 in the treatment of acute kidney failure only the FKBP12 binding capability of the compound is required, while the immunosuppressive activity via calcineurin binding is considered as a likely risk to the patients. The methoxy groups at C13 and C15 are thought to have significant influence on the immunosuppressive activity of the molecule. Consequently, FK506 analogs with different functionalities at C13 and C15 were generated by targeted CRISPR editing of the AT domains in module 7 and 8 of the biosynthetic assembly line in Streptomyces tsukubaensis. In addition, the corresponding FK520 (C21 ethyl derivative of FK506) analogs could be obtained by media adjustments. The compounds were tested for their bioactivity in regards to FKBP12 binding, BMP potentiation and calcineurin sparing. 15-desmethoxy FK506 was superior to the other tested analogs as it did not inhibit calcineurin but retained high potency towards FKBP12 binding and BMP potentiation.


Assuntos
Calcineurina , Streptomyces , Tacrolimo , Humanos , Tacrolimo/farmacologia , Tacrolimo/metabolismo , Calcineurina/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Imunossupressores/farmacologia , Imunossupressores/química
20.
Transplantation ; 108(3): 679-692, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37872660

RESUMO

BACKGROUND: Adoptive cellular therapy (ACT) with antibody-suppressor CXCR5 + CD8 + T cells (CD8 + T Ab-supp ) inhibits alloantibody production, antibody-mediated rejection (AMR), and prolongs graft survival in multiple transplant mouse models. However, it is not known how conventional immunosuppressive agents impact the efficacy of CD8 + T Ab-supp ACT. METHODS: We investigated the efficacy of CD8 + T Ab-supp cell ACT when combined with calcineurin inhibitor (CNi) or mammalian target of rapamycin inhibitor (mTORi) in a murine model of kidney transplant. RESULTS: ACT-mediated decrease in germinal center B cells, posttransplant alloantibody titer, and amelioration of AMR in high alloantibody-producing CCR5 knockout kidney transplant recipients were impaired when ACT was combined with CNi and enhanced when combined with mTORi. CNi (but not mTORi) reduced ACT-mediated in vivo cytotoxicity of IgG + B cells and was associated with increased quantity of germinal center B cells. Neither CNi nor mTORi treatment impacted the expression of cytotoxic effector molecules (FasL, Lamp1, perforin, granzyme B) by CD8 + T Ab-supp after ACT. Concurrent treatment with CNi (but not mTORi) reduced in vivo proliferation of CD8 + T Ab-supp after ACT. The increase in quantity of splenic CD44 + CXCR5 + CD8 + T cells that occurs after ACT was reduced by concurrent treatment with CNi but not by concurrent treatment with mTORi (dose-dependent). CONCLUSIONS: Impaired efficacy of ACT by CNi is attributed to reduced persistence and/or expansion of CD8 + T Ab-supp cells after ACT. In contrast, concurrent immunosuppression with mTORi preserves CD8 + T Ab-supp cells quantity, in vivo proliferation, and in vivo cytotoxic effector function after ACT and enhances suppression of humoral alloimmunity and AMR.


Assuntos
Calcineurina , Imunossupressores , Animais , Camundongos , Imunossupressores/farmacologia , Inibidores de Calcineurina , Linfócitos T CD8-Positivos , Serina-Treonina Quinases TOR/metabolismo , Isoanticorpos , Rejeição de Enxerto/prevenção & controle , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...